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Introduction
Tumor invasion and metastasis are the major cause of cancer mortality. This is
particularly true for breast cancer since metastasis of the primary tumor leads to tumor

inaccessibility and, consequently, greater mortality. Many studies have shown the

importance of signaling molecules in changes that are associated with transformed
phenotypes (1-3). In fact, many signaling molecules are affiliated with cytoskeleton
changes that accompany the motile or metastatic i)henotype. The Rho family of small
GTPases (Rho, Rac and Cdc42) are members of the Ras superfamily; all of which
regulate cell function via conversion between a GTP-bound active state and a GDP-
bound inactive form. Recently, it has become clear that the Rho family mediates

morphological and cytoskeletal changes of both normal and transformed cells (4,5). Rho

activation leads to stress fiber formation and focal adhesions. Activation of Rac leads to
membrane ruffles and lamellipodia formation. Similarly, Cdc42 regulates the extension
of actin filament bundles into filopodia. The mechanisms by which the Rho family of
GTPases regulate cytoskeleton remodeling is not well understood.

Dynamic rearrangerﬁent of the cytoskeleton is, in part, driven by actin polymerization
and actin-myosin interactions. Myosins are mechanoenzymes which generate force along
actin filaments and, thus, are crucial for cell movements, including cytokinesis,

pseudopod formation, polarized growth and cell migration (6-8). Changes in the

expression of myosin isoforms have been linked to the transformed phenotype in both
melanoma and breast cancers (9-11). Recently, Rho has been shown to regulate myosin
activity though Rho kinase, an effector molecule for Rho (12,13). Rho kinase
phosphorylates myosin phosphatase and inhibits its function, concequently acting to
increase myosin phosphorylation. Therefore, Rho GTPase seems, in part, to regulate
cytoskeleton changes by activating Rho kinase and thereby increasing myosin

phosphorylation and effecting its force generating abilities.
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In this grant we proposed to examine the effects p-21 activating kinase (PAK), an
effector molecule for Rac and Cdc42, had on myosin phosphorylation during migration
of breast cancer cells (Aims 2 & 3). Our results in this report indicate that PAK acts to
inhibit myosin phosphorylation, the opposite effect that Rho kinase had on myosin. This
inhibition is not due to a direct interaction of PAK with myosin. Our data suggest that
this effect is due to PAK phosphorylation and inhibition of myosin light chain kinase
(MLCK), a kinase known to phosphorylate myosin and thereby regulate its activity.
Materials and Methods
Transfection of cells with Semliki Forest Virus
The cDNA encoding PAK1 WT and mutation T423E were all expressed in cells using
the Semliki Forest Virus (SFV) Gene Expression System (Life Technologies,
Gaitherburg, MD). The cDNAs were PCR amplified using primers that contained a
BamH1 restriction enzyme site and a myc tag at the 5’ end. These constructs were
subcloned into the BamH1 site of the Semliki Forest vector pSFV3. In vitro transcription
of linearized pSFV3 constructs and pSFV-Helper2 was performed using SP6 RNA
polymerase. RNA transfection of BHK-21 cells was done by electroporation as
previously described (14), yielding recombinant viral stocks of approximately 10
plaque-forming units (pfu)/ml. Viral stocks were stored at -80°C until used. Virus was
activated per manufactures instruction, after which BHK-21, MDA 435, HS 578T and
ZR- 75 cells were infected in serum-free media. Transfection efficiency of recombinant
virus was routinely greater than 95% in most cell lines examine. Cells were allowed to
express protein for 6 to 8 hour after infection in serum free media before use in
experiments.

Cell Adhesion Assay
Cell adhesion assays were performed as previously described (15). In brief, cells were
suspended in basal media (GMEM, Life Technologies) containing no serum and seeded

in 6-well plastic microtiter plates containing coverslips pre-coated with 20ug/ml



fibronectin (Sigma). Cells were allowed to adhere and at various time points were fixed
in 4% paraformaldehyde. For inhibition studies, various concentrations of BDM (2,3-
Butanedione Monoxime, Sigma) and ML-7 (Calbiochem) were placed in media prior to
cells.

Immunofluorescence

Cells attached to coverslips were fixed in 4% paraformaldehyde for 20 min, then
permeabilized with 0.5% Triton X-100 for 20 min. Coverslips were incubated with anti-
myc at 1:300 (9E10) or anti-§ Gal at 1:5,000 (Promega, Madison, WI) for 1 hr, and
washed with PBS. Cells were incubated for 1 hr with rhodamine phalloidin 1:500 (Sigma
Chemical Co.) and FITC-conjugated anti-mouse IgG 1:300 (Cappel Laboratories,
Cochranville, PA), washed with PBS and mounted in Fluoromount-G (Southern
Biotechnology Associates, Biringham, AL). Slides were visualized using a Nikon
Labphot-2 DFX-DX epifluorescence microscope. Images were photographed with a
Nikon FX-35 DX 35-mm camera back and Kodak print film (Tmax).

Immunoblots

30 ul of cell lysate from control (nontransfected) or transfected BHK-21 cell (35 mM
dish) were run on 15% SDS-PAGE gels, transferred to PVDF membrane using semi-dry
transfer apparatus, stained with a 2% Ponseau S solution to check transfer then rinsed in
water and blocked with buffer containing 10% goat serum, 3% BSA in 10mM Hepes.
Blots were incubated with anti-Ser19 MLC-P, pp2b, for 1 hr (16). Protein bands were
visualized with horseradish-peroxidase-conjugated anti-rabbit IgG (Pierce) and

chemiluminescence (Pierce).

In-Gel Kinase Assay
PAK kinase activity was detected in gel by its ability to phosphorylate a p47™° peptide

corresponding to amino acids 297-331 as previously described ( 17).




Rac Activity Assay

Cells were placed in microtiter plates coated with fibronectin and at various times lysed
with cold RIPA buffer (containing PMSF, leupeptin, aprotinin and orthovanadate) in the
presence of 10ug of GST-PBD (the domain of PAK which binds the GTP forms of Rac
and Cdc42). Clarified cell lysates were incubated 1hr at 4°C with Glutathione Sepharose
4B beads in binding buffer (25mM Tris-HCL, 1mM dithiotreitol, 30mM MgCl, 40 mM
NaCl, 0,5% NP40). Beads were pelleted and washed 5 times in binding buffer then
resuspended in 20p! of sample buffer. Proteins were separated on a 12% SDS-PAGE gel,
transferred to nitrocellulose membrane and blotted using anti-Rac.

RESULTS

Detailed cellular analysis of breast cancer cell lines has been hindered by the low
protein expression and number of transfected cells that microinjection and other
traditional methods render. Therefore, we perfected a viral gene expression system to
overcome this problem. This system has allowed us to transiently express Rho family
GTPases and PAKs with an efficiency of greater than 95% in many breast cancer cell
lines (figure 1 left panel, table 1). Consequently, we are now able to study a population of
cells which can be placed into bioassays such as migration or adhesion assays.

During cell spreading the cytoskeleton is in a dynamic state of remodeling (18,19).
The spreading edge of a cell is often compared to the leading edge of a migrating cell and
collectively these are referred to as moving edges. Furthermore, cell spreading is a
prerequisite for cell migration. To understand the mechanism by which the Rho family of
small GTPases exerts its effect on the cytoskeleton, we transfected cells with Racl and its
mutant forms, and performed cell adhesion assays. BHK-21 cells were transiently
transfected using the viral gene expression system and allowed to overexpress Racl WT,
dominant negative Racl (T17N), and constitutively active Racl (Q61L) for 6 hr. After
expression cells where placed on fibronectin coated coverslips and allowed to adhere and

spread for 2 hr. Cells expressing Lac Z or Racl WT attached and spread normally (figure




1). However, cells expressing dominant negative Racl (T17N) strongly inhibited
spreading (figure 1). BHK-21 cells expressing constitutively active Racl (Q61L) started
to spread but spreading was inhibited at an intermediate stage, characterized by
peripheral filamentous actin (figure 1). To confirm that the effects we observed with
Racl (T17N) were truly due to an inhibition of spreading, and not due to cell death or the
inhibition of cells attachment, we placed cells expressing Racl WT, Q61L, T17N and
Lac Z in 24-well microtiter plates coated with fibronectin and performed adhesion assays
at various time points (figure 2). At every time point control (no virus) cells and
transfected cells showed no difference in their ability to adhere. Thus, thé effects seen
with Racl (T17N) is genuinely due to an inhibition of cell spreading. Overexpression of
both constitutively active or dominant negative Rac seem to interfere with the ability of
the cell to spread. This observation suggests that it is the cycling of Rac between a GDP
and GTP bound form thst is important for normal cell spreading to occur.

To further understand Rac’s we looked at the activity of Rac during adhesion and
spreading. Cells were transfected with Racl1 WT and Q61L, allowed to express protein
for 6hr, then placed in an adhesion assay and lysed at various time points. Cell lysates
were incubated with a domain of PAK which specifically binds GTP- bound Rac or
Cdc42. This assay allows us to detect Racl in its activated state. Activation of Racl WT
was detected at 15 min and reduced to base line activity by 120 min, the time by which
most of the cells have completed spreading (figure 3). This data indicates that adhesion
alone is sufficient to activate Racl. Together these results suggest that the early stages of
cell spreading are dependent on Racl activity.

To investigate the mechanism by which Racl exerts its effect on cell spreading we
examined the effects of PAK 1, a kinase which is activated by Rac and Cdc42, on cell
adhesion and spreading. Control cells or cells overexpressing Lac Z, PAK1 WT, or
mutated catalytically active PAK1 (T423E) were placed in microtiter plates and allowed

to spread. At various times cells were lysed and in-gel kinase assays were performed.



Endogenous Pak activity was highest during the first 15 min of cell spreading, and
gradually decreased to nearly base line activity by 120 min, or when cells were fully
spread (figure 4). Similar experiments were performed on fibronectin coated coverslips
and observed using immunofluorescence. After 2 hr control and PAK1 WT cells attached
and spread normally. Phalloidin stain reveals a typical fibroblast-like morphology, with
numerous stress fibers (appendix, figure 1A). In cells expressing PAK1 T423E
attachment to fibronectin was normal, but spreading was dramatically inhibited as
evident by the round cell morphology (appendix, figurelA).

Cell spreading has been suggested to be a actin-myosin mediated event (18,19). To
confirm myosins role in spreading of BHK-21 cells we used inhibitors of myosin and
myosin light chain kinase (MLCK). BDM has been reported to be a reversible inhibitor
of myosin ATPase activity and has been shown to inhibit postmitotic cell spreading
(Mit.). At a concentration of 20mM BDM inhibited BHK-21 cell spreading even at the
90 min time point in an adhesion assay (appendix, figure 1B). This inhibition was
reversible: when BDM was washed out after 45 min, spreading resumed and occurred
normally (appendix, figure 1B). This inhibition of cell spreading was dose dependent
when tested at concentrations from 2 to 50 mM (data not shown). Similar results were
obtain with the MLCK inhibitor ML-7 (data not shown) (20).

An increase in phosphorylation at Ser-19 in MLC is essential for force generation by
myosin IL. During postmitotic cell spreading, phosphorylation of this site is high when
compared to completely spread cells (21). To further investigate the mechanism by which
PAK1 exerts its effect oh the spreading of BHK-21 cells we analyzed the effect PAK1
had on MLC phosphorylation. BHK-21 cells transfected with PAK1 T423E, or control
cells (non-transfected) were allowed to attach and spread on a fibronectin matrix, then
lysed at various time points. Immunoblot analysis was performed using an antibody
which recognizes the Ser-19 phosphorylated form of MLC (16). During cell spreading

the control cells show a gradual increase in MLC phosphorylation, with the maximum at
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the 45 min time point (appendix, figure 2). However, PAK1 T423E cells show little to no
phosphorylation of MLC at any of the time points, consistent with the inability of these
cells to spread (appendix, figure 2). Cells transfected with Lac Z or Pak WT yielded
similar result as control cells (data not shown). These data suggest that in vivo
catalytically active PAK1 acts to inhibit phosphorylation of MLC on Ser-19.

The calcium-calmodulin dependent myosin light chain kinase (MLCK)
phosphorylates MLC on Ser-19 and is known in vivo to be responsible for promoting the
force generating ability of myosin II. Therefore, in order to understand PAK’s role in
decreasing phosphorylation of MLC, we looked at its effect on MLCK. In vitro
phosphorylation experiments demonstrate that PAK 1 can phosphorylate MLCK and this
phosphorylation is independent of calmodulin (appendix, figure 3). Interestingly, when
MLCK is phosphorylated by PAK its activity towards MLC is decreased by ~50 %
(appendix, figure 3). This data suggest that catallytically active PAK inhibits MLC
phosphorylation by phosphorylating MLCK and downregulating its activity.

To test the ability of PAK to inactivate MLCK in vivo cells were transfected with
PAK1 WT and T423E. Cells were lysed and MLCK was immunopercipitated and
assayed for activity. MLCK immunopercipitated from PAK T423E cells showed a
significant decrease in activity when compared to MLCK from control or PAK WT
expressing cells (appendix, figure 4). This data confirms our in vitro data that PAK

phosphorylation of MLCK inhibits its activity.
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Rac1 Q61L

(constitutively active

Rac1 T17N

(dominant negative)

anti-Myc
or Phalloidin
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g

Figure 1: Adhesion and spreading of BHK-21 cells transfected with
Rac 1 mutants. BHK-21 cells were infected with virus containing Lac Z
(control), Rac WT, Q61L (constitutively active), T17N (dominant negative)
cDNAs, and were allowed to express protein for 6 hr. Cells were harvested,
plated on cover slips coated with fibronectin, and allowed to adhere and
spread for 2 hrs. After 2 hrs of adhesion Rac 1 WT and Lac Z had a normal
fibroblast-like morphology with numerous stress fibers. The Rac 1 T17N
cells still attached to the fibronectin matrix, but spreading was strongly
inhibited. Rac 1 QB1L cells had a rounded morphology with peripheral
filamentous actin staining.
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Table 1: Transfection efficiency of different
cell lines with Semliki Forest Virus

Cell line Cell Type % Transfection
m

BHK-21 fibroblast >95%

MDA 435] breastcancer{ >95%

Hs 578T breast cancer | >95%

ZR 75 breast cancer | >95%

T47D breast cancer | ~40%

0.75+ T
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o =N\ =
§§ = =
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< Q [&]
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Figure 2: Adhesion assay of BHK-21 cells transfected with Racl and
mutants. Cells were infected with Lac Z (as a control) or Racl and mutations,

allowed to express for 6 hr, harvested, and placed in 24-well plates coated with
fibronectin. At various time points wells were washed 3 times, fixed and stained
with crystal violet. Stain was dissolved and read at OD 600. At all time points,

control (no virus), Lac Z, Racl WT, Q61L, T17N cells showed no difference in :
their ability to adhere. This demonstrates that all the cells were equally capable

of attaching to a fibronectin matrix. Consequently, the data in figure 1 with Racl
T17N is truly due to the cells inability to spread.
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Rac1-wt Rac1-Q61L

GTPYS 0 15 45 120 GTPYS 0 156 45 120 min

expression:

GTPyS 0 15 45 120 GTPyS O 15 45 120 min

Figure 3: Activation of Racl by adhesion. Cells were infected with Racl WT

and Q61L virus, allowed to express protein for 6 hr, then placed in an adhesion -
aassay and lysed at various time points. Cell lysates were incubated with a domain
of Pak which specifically binds Rac-GTP. This assay allows us to detect Rac in
its activated state. Constitutively active Racl Q61L is detectable in all lanies

including time O (positive control). Activation of Racl WT was detectable-as -

early as 15 min and decreased by 120 min. This indicates that adhesion alone is
sufficient to activate Rac.

Endogenous PAK Transfected
PAK T423E

Time

(min) 0 15 45 120 0 15 45 120

Fold: 1.0 25 20 17 49 57 59 6.1

Figure 4: PAK activity during adhesion. BHK-21, control (no virus)
and PAK T423E (catalytically active), infected cells where placed in an
adhesion assay and lysed at various time points. Cell lysates were run
out on a gel containing p47 peptide and an in-gel kinase assay was
performed to detect PAK activity (5). Constitutively active PAK shows
high activity at all time points. However, control cells show little activity
at time 0 with a dramatic increase in PAK activity at 15 min. Note the
decrease in PAK activity at the later time points, or when cells are fully
spread. This demonstrates that adhesion alone is sufficient to activate
PAK and that PAK activity is highest during cell spreading.
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Conclusion

Cell adhesion, migration and invasion play a critical role in understanding tumor
metastasis. Comprehending cytoskeleton dynamics is pivotal in understanding the
complexities of metastasis. Thus, our studies have first focused cell on spreading in order
to understand what is occurring at the moving edge of the cell. In this report we provide
evidence that the small GTPase Racl is important for cell spreading, a process necessary
for migration. Rac 1 activity is high early during cell spreading and decreases to base line
levels in the later stages of spreading. Both dominant negative and constitutively active
Racl impair spreading, suggesting the necessity of the GTPase to cycle (turn on, then off)
in order for the cell to complete its normal function.

To understand how small GTPases regulate cytoskeleton dynamics, we examined the
effect of PAK, an effector molecule of Rac and Cdc42, had on cell spreading. Recently,
our lab has shown that PAK localizes to Rac induced membrane ruffles (22) and
mutationally active forms can cause cytoskeleton changes (23). This data suggest a role
for PAK in cytoskeleton remodeling. Data presented in this report further demonstrate the
importance of PAK and suggest a possible mechanizem by which it influences the
cytoskeleton. Activated PAK inhibits cell spreading and decreases myosin
phosphorylation, consistence with the inability of the cells to spread. We describe a novel
target for PAK, MLCK. PAK phosphorylates MLCK and inhibits its activity. Aim 2 in
our grant proposal was to determine if PAK effected myosin phosphorylation (Technical
Objective 2: task 3 and 4). We believe that these results satisfy the objective of Aim 2.

At present we are wofking on Aim 3 in our proposal, which is to examine the
importance of PAK-myosin interactions on breast cancer cell migration. With the
development of the viral gene expression system we are now able to transfect breast
cancer cells with high enough transfection efficiency to do migration assays in Boyden

chambers (Technical Objective 3: task 5 and 6). These experiments are currently

ongoing.
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Cytoskeletal remodeling is crucial in many cellular events, including cell adhesion,
spreading and motility . The Rho family of small GTPases (Rho, Rac and Cdc42) have
been implicated as critical regulators of cytoskeletal changes 45, p21-activated protein
kinase 1 (PAK1), an effector molecule activated by Rac and Cdc42, localizes to Rac-
induced membrane ruffles ¢ and mutationally activated PAKSs induce cytoskeletal
rearrangement "%, suggesting a role for PAK in cytoskeletal dynamics. However, the targets
of PAK1 and their specific roles in regulating cytoskeletal structures are not understood.
Cytoskeletal dynamics are modulated in large part by actin and myosin IT >, Since actin-
myosin IT interactions are regulated by myosin light chain phosphorylation (MLC-P), we
examined the effects of PAK on MLC-P during cell spreading. Here we show that an
activated mutant of PAK1, but not wtPAK1, inhibits cell spreading and MLC-P. In vitro
and in vivo studies revealed a novel target for PAK, myosin light chain kinase (MLCK), the
enzyme that phosphorylates the 20 kDa light chain of myosin II. Activated PAK
phosphorylates MLCK and inhibits its ability to phosphorylate Ser 19 of ML.C. An
important component of cytoskeletal regulation by PAK thus appears to be its ability to
modulate myosin II activity through phosphorylation and downregulation of MLCK.

Cell adhesion and cell spreading on extracellular matrix leads to active cytoskeletal
remodeling that is dependent on both actin polymerization and actin-myosin II interactions >>'2.
Cell adhesion also results in activation of the Rac- and Cdc42-dependent effector p21-activated
kinase (PAK 1) . Therefore, BHK-21 cells expressing wild type PAK1 (wtPAK]1) or a
* catalytically active PAK1 (T423E) were placed on fibronectin-coated cover slips and allowed to

adhere and spread for 2 hr. Cells were then fixed and examined using fluorescence microscopy.

Non-transfected control cells, LacZ virus controls, and cells expressing wtPAK1 attached and




spread normally over the 2 hr time course (average of 80% cells spread, n=271). Phalloidin
staining revealed a typical fibroblast-like morphology, with numerous stress fibers (Fig. 1A).
Cells expressing PAK1 (T423E) attached to fibronectin normally, but cell spreading was
dramatically reduced (average of 23% cells spread, n=303) and the cells exhibited a non-spread,
I rounded morphology for the duration of the experiment (Fig. 1A).

Postmitotic cell spreading has been suggested to be an actomyosin-mediated event >'2.
Actin-myosin II interactions are regulated by MLC-P *** and MLC-P on Ser-19 is increased
during postmitotic cell spreading at the moving edge, with a subsequent return to baseline in
completely spread cells '>*, Consistent with this, we have observed that BHK-21 cells exhibit
myosin II staining at the spreading edges (data not shown). In order to confirm the involvement
of myosin II in spreading of BHK-21 cells, we treated cells with inhibitors of myosin or MLCK.
BDM has been reported to reversibly inhibit nonmuscle myosin ATPase activity and been shown
to inhibit postmitotic cell spreading '2. BDM (20mM) inhibited BHK-21 cell spreading for up to
90 min (Fig. 1B). This inhibition was reversible: when BDM was washed out after 45 min,
spreading resumed and occurred normally (Fig. 1B). The inhibition of cell spreading by BDM
was dose dependent over the concentration range of 2 to 50 mM (data not shown). Similarly,
BHK-21 cell spreading was inhibited with the MLCK inhibitor ML-7 ' (data not shown).

Since expressing PAK1 (T423E) or inhibiting myosin ATPase activity directly with BDM
or indirectly with ML-7 inhibited cell spreading, we analyzed the effect of PAK1 expression on
MLC-P. Control BHK-21 cells or cells transfected with PAK1 (T423E) were allowed to attach
and spread on a fibronectin matrix and lysed at various times. Immunoblot analysis was then
performed using an antibody that specifically recognizes the Ser-19 phosphorylated form of

myosin light chain '®. Nontransfected control cells show a gradual increase in MLC-P, with the




maximum increase at 45 min, during cell spreading (Fig. 2). Cells transfected with control
plasmids (Lac Z or wtPAK1) exhibited increases in MLC-P similar to that of the non-transfected
cells (data not shown). In contrast, cells expressing PAK1 (T423E) show substantially reduced

MLC-P at all time points, consistent with the inability of these cells to spread (Fig. 2). These data

suggest that catalytically active PAK1 acts in vivo to inhibit phosphorylation of myosin light chain

on Ser-19.

The calcium-calmodulin-dependent MLCK phosphorylates Ser 19 of MLC, and is known
to directly regulate the force generating ability of myosin II in vivo ", Previous experiments
have shown that MLCK is a substrate for other protein kinases and that phosphorylation can
increase *' or decrease MLCK activity *?*, Therefore, we investigated the possibility that PAK1
(T423E) directly phosphorylates and regulates MLCK activity. In vitro phosphorylation
experiments demonstrated that PAK1 can directly phosphorylate MLCK (Fig. 3) and that this
phosphorylation is independent of calmodulin binding to MLCK (data not shown). Furthermore,
the catalytic activity of MLCK phosphorylated by PAK1 is decreased by ~50 % when assayed at a
saturating calmodulin concentration (Fig. 3).

We next examined the ability of PAK to inactivate MLCK in vivo by transfecting Hela
cells with wild type or PAK1 (T423E). Western blot analysis confirmed equal expression of wild
typ‘e or PAK1 (T423E). The cells were lysed and endogenous MLCK was immunoprecipitated
and assayed for activity. MLCK immunoprecipitated from cells expressing PAK1 (T423E)
showed substantially decreased activity when compared to MLCK immunoprecipitated from
control- or wtPAK1-expressing cells (Fig.4). These data support the in vitro data indicating that

PAK-mediated phosphorylation of MLCK inhibits its activity, thereby resulting in a decrease of

MLC phosphorylation.



The dynamic nature of cell rearrangement and motility requires complex yet coordinated
regulation by Rho, Rac, and Cdc42 GTPases **%. Recently, the Rho effector molecule Rho
kinase has been shown to phosphorylate myosin phosphatase and inhibit its activity %, and may
directly phosphorylate the MLC as well 7. Both activities serve to increase MLC-P and stimulate
I contractility *?7. This regulatory activity of Rho may be important in the contractile events
necessary for cell spreading “***’ and maintenance of the rigidity characteristic of fully spread,
stationary fibroblasts. In coﬁtrast to Rho, Rac and Cdc42 appear to regulate actin rearrangements
that are important in the early stages of cell spreading, as well as dynamic morphological changes
that are associated with cell migration . Our results identify a specific target for PAK, MLCK,
which is a known regulator of myosin II function. They also describe a previously unknown
mechanism for regulating MLCK activity and the intracellular level of MLC-P. Moreover, the
regulation of MLCK activity and MLC-P appears to be an important component of Rac- and
Cdc42-dependent cytoskeletal remodeling in spreading cells. Since Rho kinase and PAK have

opposing effects in MLC-P, the integrated cellular response to Rho versus Rac/CDC42 activation

may depend on the intracellular location and extent of myosin light chain phosphorylation.
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Methods
Transfection of cells with Semliki Forest Virus: The cDNA encoding wtPAK1 or a constitutively
active form of PAK1 in which threonine 423 is mutated into a glutamic acid residue (T423E)

were expressed in cells using the Semliki Forest Virus (SFV) Gene Expression System (Life

Technologies, Gaitherburg, MD). Briefly, the cDNAs were PCR amplified using primers that

contained a BamH]1 restriction enzyme site and a myc tag at the 5' end. These constructs were
subcloned into the BamH]1 site of the Semliki Forest vector pSFV3. In vitro transcription of
linearized pSFV3 constructs and pSFV-Helper2 was performed using SP6 RNA polymerase.
RNA transfection of BHK-2.1 cells was done by electroporation as previously described %,
yielding recombinant viral stocks of approximately 107 plaque-forming units (pfu)/ml. Viral
stocks were stored at -80C until use. Virus was activated per manufacturer's instruction, and
BHK-21 and Hela cells were infected in serum-free media. Transfection efficiency of recombinant
virus was routinely >95% in BHK-21 cells and >50% in Hela cells. Cells were allowed to express

protein for 6 to 8 hour after infection in serum-free media before use in experiments.

Cell Adhesion Assay: Cell adhesion assays were performed as previously described %, In brief,

cells were suspended in basal media (GMEM, Life Technologies) containing no serum and
seeded in 6-well plastic microtiter plates containing cover slips pre-coated with 20 pg/ml
fibronectin. Cells were allowed to adhere and at various time points were fixed in 4%
paraformaldehyde prior to immunofluorescence analysis. For inhibition studies, various
concentrations of BDM (2,3-butanedione monoxime, Sigma) and ML-7 (Calbiochem) were added

to the media.

Immunofluorescence: Cells attached to coverslips were fixed in 4% paraformaldehyde for 20 min,

permeabilized with 0.5% Triton X-100 for 20 min, then incubated with anti myc (9E10) at 1:300



or anti-Gal at 1:5,000 (Promega, Madison, WI) for 1 hr. Cells were then incubated for 1 hr with
rhodamine phaljoidin 1:500 (Sigma Chemical Co.) and/or FITC-conjugated anti-mouse IgG 1:300
(Cappel Laboratories, Cochranville, PA), washed with PBS, and mounted in Fluoromount-G
(Southern Biotechnology Associates, Birmingham, AL). Slides were examined using a Nikon
Labphot-ZDFX-DX epifluorescence microscope, and images photographed with a 35-mm camera
back and Kodak Tmax film.

Immunoblots: Cell lysate (30ul) from control (nontransfected) or transfected BHK-21 cells (35
mm dish) were run on 15% SDS-PAGE gels, transferred to PVDF membrane using a semi-dry
transfer apparatus, stained with a 2% Ponseau S solution to check transfer, then rinsed in water.
After blocking, blots were incubated with anti-Ser 19 phosphorylated myosin light chain antibody
pp2b for 1 hr '®. Protein bands were visualized with horseradish-peroxidase-conjugated anti-
rabbit IgG (Pierce) and chemiluminescence (Pierce).

Phosphorylation assays: Purified smooth muscle MLCK (5.2ug) was incubated at 30°C for 1 hr by
itself (autophosphorylation control) or with 0.5 pg of constitutively active recombinant GST-
PAK1 (prepared as in *) in buffer containing 10 mM MgCl,, 2 mM DTT, 0.1 mM **P-labeled
ATP (specific activity ~2000 cpm/pmol), and 20 mM Tris-HCI, pH 7.5. Aliquots were removed
at various times and analyzed by SDS PAGE and autoradiography. Samples were also tested for
MLCK activity by incubating 50 ng of autophosphorylated- or PAK1-phosphorylated MLCK at
room temperature as above, with the further inclusion of 0.5 mM CaCl,, 10-7M calmodulin, 5
mM DTT and 10 pg of purified myosin light chains. Aliquots were removed at various times and
subjected to SDS PAGE. The bands representing the myosin light chains were then excised and
counted. To quantify changes in MLCK activity in cells, MLCK was immunoprecipitated from

non transfected HeLa cells or HeLa cells expressing Lac Z, wtPAK1 or PAK1 (T423E) as




previously described * using affinity purified goat antibodies to MLCK? and Protein A-
Sepharose. The beads were washed extensively and then assayed for MLCK activity as described

above.
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